Program

Tuesday, July 15th

14:00-19:00 Registration (Public Hall Lobby)

15:50-16:00 Opening Comments & Introduction (Noh Theater)
Asako Sugimoto, Andrew Chisholm & Ahna Skop

Session 1: Systems and Quantitative Biology
Chairs: Zhirong Bao & Ronen Zaidel-Bar

16:00-16:40 The making of a worm: genes, cells and the organism
Keynote: Zhirong Bao
Sloan Kettering Institute
[This Keynote Talk is sponsored by Chroma Technology]

16:40-16:55 SSBD: a quantitative database approach for understanding spatiotemporal dynamics of C. elegans development
Kenneth H.L. Ho
RIKEN Quantitative Biology Center

16:55-17:10 Defining regulatory pathways coupling cell division timing and cell fate differentiation in C. elegans by automated lineaging
Vincy Wing Sze Ho
Hong Kong Baptist University

17:10-17:25 Using cell-specific RNA-seq to study sex-specific gonadogenesis
Mary B. Kroetz
University of Minnesota
17:25-17:40 BREAK

17:40-18:20 Genetics and the *C. elegans* Embryo: Past and Present

Keynote: Bruce Bowerman
Institute of Molecular Biology / University of Oregon

18:20-18:35 Quantitative analysis of microtubule orientation and organelle movements during meiotic cytoplasmic streaming in *C. elegans* early embryos

Kenji Kimura
Natl. Inst. of Genet. / SOKENDAI

18:35-18:50 Coordinated actomyosin kinetics in generating self-organized pattern formation in the cell cortex

Masatoshi Nishikawa
BIOTEC / MPI-CBG / MPI-PKS

18:50-19:05 A conditional knockout system based on the combination of UV/TMP single-copy integration methods and deletion mutant strains in *C. elegans*

Eriko Kage-Nakadai
Tokyo Women's Medical University School of Medicine / Osaka City University

19:05-21:00 Welcome Mixer (Japanese Garden)
Wednesday, July 16th

Session 2: Germline, Cell Division, Cell Polarity
Chairs: Sander van den Heuvel & E. Jane Albert Hubbard

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:40</td>
<td>Chromosome Dynamics During Meiosis in C. elegans</td>
<td>Keynote: Abby Dernburg</td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>9:40-9:55</td>
<td>Protein phosphatase 4 promotes chromosome pairing and synapsis, and contributes to maintaining crossover competence with increasing age</td>
<td>Aya Sato-Carlton</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>9:55-10:10</td>
<td>LIN-41 regulates continuous centrosome inactivation during oogenesis through suppression of CDK-1 pathway in C. elegans</td>
<td>Rieko Matsuura</td>
<td>National Institute of Genetics</td>
</tr>
<tr>
<td>10:10-10:25</td>
<td>Acentrosomal spindle pole assembly in C. elegans oocytes.</td>
<td>Amy Alexis Connolly</td>
<td>University of Oregon</td>
</tr>
<tr>
<td>10:25-10:40</td>
<td>Aurora A kinase AIR-1 is required for microtubule assembly of female meiotic spindles</td>
<td>Eisuke Sumiyoshi</td>
<td>Tohoku University</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Presentation</td>
<td>Speaker</td>
<td>Institution</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>11:00-11:15</td>
<td>RNA-binding Protein ATX-2 Interacts with SZY-20 and ZYG-1 to Regulate Centrosome Assembly and Size</td>
<td>Mi Hye Song</td>
<td>Oakland University</td>
</tr>
<tr>
<td>11:15-11:30</td>
<td>ATX-2, the C. elegans ortholog of human Ataxin-2, is necessary for cytokinesis, ER morphology and P granule segregation</td>
<td>Megan M Gnazzo</td>
<td>University of Wisconsin-Madison</td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>Morphology of actomyosin network is regulated by colocalization of RhoGAP RGA-3/4</td>
<td>Masashi Fujita</td>
<td>RIKEN Quantitative Biology Center</td>
</tr>
<tr>
<td>11:45-12:00</td>
<td>The Rho GTPase-Activating Protein RGA-7 controls the CDC-42 / WSP-1 pathway and filopodia formation during ventral enclosure in Caenorhabditis elegans embryos</td>
<td>Sarah Jenna</td>
<td>Chemistry department, UQAM</td>
</tr>
<tr>
<td>12:00-12:15</td>
<td>Dual mechanisms ensure PAR-1 cortical asymmetry in C. elegans zygote</td>
<td>Ravikrishna Ramanujam</td>
<td>Temasek Life Sciences Laboratory</td>
</tr>
<tr>
<td>12:15-14:00</td>
<td>Lunch (Yume-Kaze Plaza)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Session 3: Developmental Timing, Cell Fate, Gene Expression

Chairs: Kiyoji Nishiwaki & Alex Hajnal

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:40</td>
<td>Regulation of asymmetric cell division by Wnt signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keynote: Hitoshi Sawa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Institute of Genetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:40-14:55</td>
<td>BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans</td>
<td>Yi-Ting Cheng</td>
<td>National Taiwan University</td>
</tr>
<tr>
<td>14:55-15:10</td>
<td>Cooperative control of cell cycle exit by G1/S inhibitors and SWI/SNF chromatin remodeling factors</td>
<td>Sander van den Heuvel</td>
<td>Utrecht University</td>
</tr>
<tr>
<td>15:25-15:40</td>
<td>How does the animal change its behavioral patterns during growth?</td>
<td>Manabi Fujiwara</td>
<td>Kyushu University</td>
</tr>
<tr>
<td>15:40-16:00</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>The Tetraspanin TSP-21 Positively Modulates Bone Morphogenetic Protein Signaling In Caenorhabditis elegans</td>
<td>Zhiyu Liu</td>
<td>Cornell University</td>
</tr>
<tr>
<td>16:15-16:30</td>
<td>TRIMming pluripotency</td>
<td>Cristina Tocchini</td>
<td>FMI/University of Basel</td>
</tr>
<tr>
<td>Time</td>
<td>Presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 16:30-16:45 | The SET-2/SET1 histone H3K4 methyltransferase maintains pluripotency in the *Caenorhabditis elegans* germline
 | **Francesca Palladino**
 | Ecole Normale Supérieure de Lyon/Université Lyon |
| 16:45-17:00 | HTZ-1 and MYS-1 act redundantly to maintain cell fates in somatic gonadal cells through repression of *ceh-22* in *Caenorhabditis elegans*
 | **Yukimasa Shibata**
 | Kwansei Gakuin Univ. |
| 17:00-17:15 | Sequential partitioning of histone methylation and demethylation activities ensures the robustness of natural transdifferentiation
 | **Sophie Jarriault**
 | IGBMC |
| 17:15-17:30 | Essential roles of XRN2 and its novel binding partner PAXT-1 in RNA turnover and *C. elegans* development
 | **Takashi Miki**
 | Friedrich Miescher Institute for Biomedical Research |
| 17:30-19:00 | Dinner (with poster viewing)
 | (Reception Hall, Conference Room 3/4, Japanese Style Dressing Room) |
| 19:00-21:00 | **Poster Session I**
 | Presenters of odd-numbered posters
 | (Reception Hall, Conference Room3/4) |
| 21:00-22:30 | Beer Time (Yume-Kaze Plaza) |
Thursday, July 17th

Session 4: Neurobiology
Chairs: Alexander M van der Linden & Takeshi Ishihara

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:40</td>
<td>Trafficking of synaptic vesicle proteins</td>
<td>Keynote: Sandhya P. Koushika</td>
<td>DBS-TIFR</td>
</tr>
<tr>
<td></td>
<td>Keynote: Sandhya P. Koushika</td>
<td></td>
<td>DBS-TIFR</td>
</tr>
<tr>
<td>9:40-9:55</td>
<td>Neurons and glia cooperate in assembly of the embryonic C. elegans nerve ring</td>
<td>Georgia Rapti</td>
<td>The Rockefeller University</td>
</tr>
<tr>
<td>9:55-10:10</td>
<td>Extracellular cues that pattern dendritic morphogenesis</td>
<td>Xintong Dong</td>
<td>Stanford University</td>
</tr>
<tr>
<td>10:10-10:25</td>
<td>Spatial Control of Neurite Branching by Wnt-Frizzled/PCP Signaling</td>
<td>Chun-Hao Chen</td>
<td>National Taiwan University</td>
</tr>
<tr>
<td>10:25-10:40</td>
<td>The role of TDP-43 in axonal transport of mRNA</td>
<td>Justin C. Chaplin</td>
<td>The University of Queensland</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00-11:15</td>
<td>A pair of RNA binding proteins modulates synaptic transmission, behavior, and alternative splicing in distinct neuron classes</td>
<td>Adam D Norris</td>
<td>Harvard University</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Speaker</td>
<td>Institution</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>11:15-11:30</td>
<td>Combinatorial expression of evolutionally conserved RNA binding proteins determines neuron-type specific alternative splicing of the daf-2 insulin/IGF receptor in C. elegans</td>
<td>Masahiro Tomioka</td>
<td>University of Tokyo</td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>Pathways that modulate excitation-inhibition imbalance in C. elegans locomotor circuit</td>
<td>Seika Takayanagi-Kiya</td>
<td>University of California San Diego</td>
</tr>
<tr>
<td>11:45-12:00</td>
<td>Systematic reverse genetics approach to reveal molecular mechanisms of the odorant choice behavior.</td>
<td>Yuji Suehiro</td>
<td>Tokyo Women's Medical University</td>
</tr>
<tr>
<td>12:00-12:15</td>
<td>Neuronal mechanisms of decision making in C. elegans olfactory behavior revealed by a highly integrated microscope system</td>
<td>Yuki Tanimoto</td>
<td>Osaka Univ.</td>
</tr>
<tr>
<td>12:15-14:00</td>
<td>Lunch (Yume-Kaze Plaza)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00-17:30</td>
<td>Free Time (Optional: Walking Excursion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-19:00</td>
<td>Dinner (with poster viewing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Reception Hall, Conference Room 3/4, Japanese Style Dressing Room)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00-21:00</td>
<td>Poster Session II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presenters of even-numbered posters</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Reception Hall, Conference Room3/4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00-22:30</td>
<td>Beer time (Yume-Kaze Plaza)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Friday, July 18th

Session 5: Cell Death, Organelles

Chairs: Ken Sato & Anne Spang

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Speaker/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-9:40</td>
<td>To eat correctly: Phospholipid signaling in apoptotic cell recognition and internalization</td>
<td>Keynote: Xiaochen Wang NIBS</td>
</tr>
<tr>
<td>9:40-9:55</td>
<td>Translational Regulators GCN-1 and ABCF-3 Act Together to Promote Developmental and DNA Damage-Induced Germ-Cell Deaths</td>
<td>Takashi Hirose MIT</td>
</tr>
<tr>
<td>9:55-10:10</td>
<td>PGL-1 and PGL-3, a Family of Constitutive P Granule Components, Prevent Excessive Levels of Germline Apoptosis in Caenorhabditis elegans</td>
<td>Hyemin Min Department of Bioscience and Biotechnology, Konkuk university</td>
</tr>
<tr>
<td>10:10-10:25</td>
<td>C. elegans CED-3 caspase regulates centrosome asymmetry in an apoptotic death</td>
<td>Barbara Conradt Ludwig-Maximilians-University Munich</td>
</tr>
<tr>
<td>10:25-10:40</td>
<td>Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans</td>
<td>Sheng Zeng University of Zurich</td>
</tr>
<tr>
<td>10:40-11:00</td>
<td>BREAK</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Title</td>
<td>Speaker</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>11:00-11:15</td>
<td>rab-35 and arf-6 function together in linker cell corpse removal</td>
<td>Lena Kutscher</td>
</tr>
<tr>
<td>11:15-11:30</td>
<td>How do necrotic cells attract their phagocytes</td>
<td>Zheng Zhou</td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>Novel binding partner of small GTPase RAB-11 regulates RAB-11 redistribution to Golgi after fertilization</td>
<td>Aisa Sakaguchi</td>
</tr>
<tr>
<td>11:45-12:00</td>
<td>An evolutionarily conserved mechanism for PI3P turnover during early-to-late endosome conversion</td>
<td>Kai Liu</td>
</tr>
<tr>
<td>12:00-12:15</td>
<td>Compartmentalisation of the endoplasmic reticulum regulates the polarity in C. elegans embryo</td>
<td>Zuo Yen Lee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Session 6: Morphogenesis, Cytoskeleton

Chairs: Mi Hye Song & King Lau Chow

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-14:40</td>
<td>Embryonic life under tension Keynote: Michel Labouesse</td>
<td>IGBMC</td>
<td></td>
</tr>
<tr>
<td>14:40-14:55</td>
<td>The WAVE/SCAR complex interacts with the two C. elegans junctional complexes and regulates the levels and localization of (\alpha)-catenin/HMP-1. Martha Soto</td>
<td>Rutgers - Robert Wood Johnson Medical School</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Twitchin kinase interacts with MAPKAP kinase 2 in C. elegans striated muscle Yohei Matsunaga</td>
<td>Emory University</td>
<td></td>
</tr>
<tr>
<td>15:10-15:25</td>
<td>Attenuation of N-glycosylation causes polarity and adhesion defects in the C. elegans embryo Anne Spang</td>
<td>University of Basel</td>
<td></td>
</tr>
<tr>
<td>15:25-15:40</td>
<td>SPV-1, an F-BAR and RhoGAP domain protein, regulates spermatheca contractility Pei Yi Tan</td>
<td>National University of Singapore</td>
<td></td>
</tr>
<tr>
<td>15:40-15:55</td>
<td>Genetic analysis of epidermal cell mechanical properties during C. elegans embryonic elongation Gabriella Pásti</td>
<td>IGBMC</td>
<td></td>
</tr>
<tr>
<td>15:55-16:10</td>
<td>The microtubule minus-end binding protein PTRN-1 and other cytoskeletal proteins function in epidermal development Marian Chuang</td>
<td>UC San Diego</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:10-16:30</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:30-17:30</td>
<td>Morphogenetic roles of non-centrosomal microtubules</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special Keynote: Masatoshi Takeichi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RIKEN Center for Developmental Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30-19:00</td>
<td>Visit to Nara National Museum (Nara Buddhist Sculpture Hall)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00-19:30</td>
<td>Welcome Drink (Restaurant "Half Time" at Nara National Museum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30-21:30</td>
<td>Banquet (Restaurant "Half Time" at Nara National Museum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22:00-</td>
<td>Japanese Pub near Nara Station (optional)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Saturday, July 19th

Session 7: Aging, Stress, Metabolism, Pathogenesis

Chairs: Seung-Jae Lee & Chun-Liang Pan

9:00-9:40 The worm transcriptome: the past and the future

Keynote: Yuji Kohara
National Institute of Genetics

9:40-9:55 DAF-16/FOXO antagonizes age-related loss of germline stem cells in *C. elegans*

E. Jane Albert Hubbard
New York University School of Medicine

9:55-10:10 Sensory neuronal regulation of lifespan via modulating insulin-like peptides in *C. elegans*

Murat Artan
Information Technology Convergence Engineering

10:10-10:25 *daf-41/co-chaperone p23* regulates *C. elegans* lifespan in response to temperature

Makoto Horikawa
Max Planck Institute Biology of Ageing

10:25-10:40 SUMO modulates NHR-25/NR5A during *C. elegans* vulval development

Masako Asahina
University of California/Academy of Sciences of the Czech Republic

10:40-10:55 BREAK

10:55-11:10 Iron homeostasis in *C. elegans*: development and ageing

Gawain McColl
The Florey Institute of Neuroscience and Mental Health
11:10-11:25 Activated and inactivated immune responses in *Caenorhabditis elegans* against *Photorhabdus luminescens* TT01

Kazuki Sato
Saga University/JSPS Research Fellow

11:25-11:40 The contribution of *C. elegans* transcription factors to fat storage and body size

Akihiro Mori
University of Massachusetts Medical School

11:40-11:55 Age-Dependent Mitochondrial Fragmentation in *C. elegans* Touch Receptor Neurons

Hao-Ching Jiang
National Taiwan University

11:55-12:00 Closing Comments

Asako Sugimoto
Tohoku University
01. Neurobiology I: Behavior, Synaptic function and Circuits

Identification of mechanisms underlying pheromone-mediated neural plasticity by analyzing wild type *C. elegans* isolates

Woochan Choi
DGIST

A natural odor attraction between *C. elegans* and Lactobacillus bacteria

Jeaim Choi
Yonsei University

Analysis of functions of LET-60Ras in regulation of exploratory behavior by a novel method, time- and cell-specific RNAi

Masayuki Hamakawa
Kyushu University

Gravity perception and gravitaxis behavior in *C. elegans*

Tong Young Lee
Yonsei University

Neural basis of plasticity and bidirectionality of klinotaxis.

Yohsuke Satoh
The University of Tokyo
Role of ASE Left Gustatory Sensory Neuron in worms’ behavior of NaCl Chemotaxis
Lifang Wang
The University of Tokyo

Analyses of the developmental changes in the odor preference of *C. elegans*
Takahiro Hino
Kyushu University

Optical neural silencing by novel light-driven proton pumps in *C. elegans*
Megumi Takahashi
Nagoya University

Behavioral changes in *C. elegans* chemotaxis to alkaline pH
Takashi Murayama
Okinawa Institute Science and Technology Graduate University

Chemotaxis assays reveal phoretic carrier sensing in *Caenorhabditis*
Gavin C Woodruff
Forestry and Forest Research Products Institute

flip-12 neuropeptide and acetylcholine orchestrate to generate proper head locomotion of *C. elegans*
Do-Young Kim
DGIST

Dopamine-octopamine layered monoamine signaling modulate sensory response in odor learning
Fumie Hiramatsu
Osaka Univ.

Non-redundant function of two subtypes of octopamine receptors in food deprivation-mediated signaling in *C. elegans*
Satoshi Suo
University of Tokyo
Analyses of molecular mechanisms that negatively regulate forgetting of olfactory adaptation

Takahiro Ito
Kyushu University

Numerical approach towards quantitative understanding of neural network of \textit{C. elegans}

Takuya Onuma
Ibaraki University

A computational model of olfactory signaling in \textit{C. elegans}.

Mamoru Usuyama
Ibaraki University

02. Neurobiology II: Development and Cell Biology

The homeodomain protein LIM-4 specifies a peptidergic and cholinergic motor neuron fate in \textit{C. elegans}

Jinmhan Kim
DGIST

Internal metabolic status modulates pheromone-mediated neural plasticity in \textit{C. elegans}

Leesun Ryu
DGIST

Coordinated regulation of peptidergic SAA interneuron traits through a conserved terminal selector gene

Myeongjin Hong
DGIST

\textit{C. elegans ap}l-1 allows practical analysis of Alzheimer's Disease-Related Amyloid Precursor Protein function.

Alexander B. Mir
City College of New York
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVH-5 transcription factor regulates axon regeneration in C. elegans by activating the transcription of the svh-2 gene encoding a receptor tyrosine kinase</td>
<td>87</td>
</tr>
<tr>
<td>Chun Li</td>
<td></td>
</tr>
<tr>
<td>Nagoya university</td>
<td></td>
</tr>
<tr>
<td>The multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans</td>
<td>88</td>
</tr>
<tr>
<td>Richard Nass</td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td></td>
</tr>
<tr>
<td>Depletion of intermediate filament IFB-1 negatively affects mitochondrial trafficking, development and functionality of C. elegans amphid sensory neurons</td>
<td>89</td>
</tr>
<tr>
<td>Muniesh Muthaiyan Shanmugam</td>
<td></td>
</tr>
<tr>
<td>National Tsing Hua University</td>
<td></td>
</tr>
<tr>
<td>Genetic Analysis of A Neomorphic Tubulin Mutation That Redirects Synaptic Vesicle Targeting and Causes Neurite Degeneration in C. elegans</td>
<td>90</td>
</tr>
<tr>
<td>Jiun-Min Hsu</td>
<td></td>
</tr>
<tr>
<td>National Taiwan University</td>
<td></td>
</tr>
<tr>
<td>A CaMK cascade and neuropeptide signaling modulate pheromone-mediated developmental plasticity</td>
<td>91</td>
</tr>
<tr>
<td>JiSoo Park</td>
<td></td>
</tr>
<tr>
<td>DGIST</td>
<td></td>
</tr>
<tr>
<td>Expression of an expanded CGG-repeat RNA impairs the olfactory response in a C. elegans model of Fragile X-associated tremor/ataxia syndrome</td>
<td>92</td>
</tr>
<tr>
<td>Bi-Tzen Juang</td>
<td></td>
</tr>
<tr>
<td>National Chiao Tung University</td>
<td></td>
</tr>
<tr>
<td>Modulation of Axon Growth on C. elegans with TiO2 Nanoparticles</td>
<td>93</td>
</tr>
<tr>
<td>Chun-Chih Hu</td>
<td></td>
</tr>
<tr>
<td>National Tsing Hua University</td>
<td></td>
</tr>
</tbody>
</table>
03. Germline, Sex Determination

IFE-1, a *C. elegans* isoform of eIF4E, regulates GSP-3/4, a family of sperm-enriched protein phosphatases for sperm activation

Mohammad Al-Amin
Konkuk University

enced-25.4 is required for successful male reproduction in *Caenorhabditis elegans*

Sangmi Oh
Konkuk University

Sperm-derived TRP-3 channel mediates the onset of the calcium wave in the fertilized egg of *Caenorhabditis elegans*

Jun Takayama
RIKEN

Using Next-Generation Sequencing to Determine Gene Identity in Temperature-Sensitive, Embryonic Lethal Mutants with Adult Germline Development Defects

Josh B Lowry
University of Oregon

The *C. elegans* gene spe-45, expressed in the male germline, is essentially required for gamete fusion like mouse *Izumo1*

Tatsuya Tajima
Setsunan University

A forward genetic screen for new gamete function mutants

Amber R Krauchunas
Rutgers University

The mechanism for enrichment of a chromodomain protein MRG-1 into the primordial germ cells in *C. elegans*

Teruaki Takasaki
Kobe University
Evolution of sex and reproductive strategies: hermaphroditism and sex determination in the fungal feeding nematode *Bursaphelenchus okinawaensis*

Ryoji Shinya
HHMI and California Institute of Technology / Chubu University

Characterizing loss-of-function suppressors of conditional centrosome-defective mutants

Chien-Hui Chuang
University of Oregon

04. Cell Division and Polarity

Analyzing the effect of neopeltolide in cell division using *C. elegans* embryos

Akira Shibukawa
Tohoku University

A novel centrosomal protein GTAP-3 is involved in centriole duplication and the recruitment of γ-tubulin to centrosomes

Shinsuke Uchiya
Tohoku University

The *C. elegans* MOZART1 ortholog is essential for the recruitment of the γ-tubulin complex to centrosomes.

Nami Haruta
Tohoku University

ZYG-9 contributes to multiple aspects of cell cycle-dependent microtubule behaviors

Satoshi Namai
Tohoku University
Role of CDC-48 and UBXN-2 in spindle orientation in *C. elegans*

Ainoa Figuerola-Conchas
Université de Genève / NCCR Chemical-Biology

Syndecan/SDN-1 regulates Wnt-dependent spindle orientation in *C. elegans*

Katsufumi Dejima
University of California San Diego / Tokyo Women's Medical University

ppk-1/PIP5K regulates cwn-2/Wnt function to orient asymmetric cell divisions in C. elegans

Noaki Yoshida
SOKENDAI / NIG

Measurement-based mathematical modeling of PAR-2 protein localization in *C. elegans* embryo

Yukinobu Arata
RIKEN

Mirror asymmetric contraction of actomyosin drives left-right symmetry breaking in *C. elegans*

Yuko Kamkikawa
Sloan-Kettering Institute

PLST-1 is essential for cortical contractility during early *C. elegans* embryogenesis.

Wei Yung Ding
Mechanobiology Institute, Singapore

BAR-1/β-catenin is involved in asymmetric cell divisions of seam cell

Yinhua Jin
National Institute of Genetics

Role of egg shell geometry in *C. elegans* embryonic development

Pei Yi Tan
National University of Singapore
05. Intracellular Trafficking and Organelle Biogenesis

C. elegans chaperonin CCT/TRiC is required for actin biogenesis and microvillus formation in intestinal epithelial cells

Keiko Saegusa
Gunma University

“PKG-1 affects OSM-3 clustering at the distal tip of cilia and negatively affects IFT particle transport in the distal segment”

Prerana Mahendra
National Tsing Hua University

A systematic *in vitro* and *in vivo* screen in axonal motors reveals synaptic vesicle transport and neuron generation direct and indirect regulating by Dynein/Dynactin

Chih-Wei Wayne Chen
National Tsing Hua University

Fertilization-induced K63-linked ubiquitination mediates clearance of maternal membrane proteins

Miyuki Sato
Gunma University

Nuclear membrane proteins act in transport of the Netrin receptor UNC-5 in cell migration in *C. elegans*.

Hon-Song Kim
Kwansei-Gakuin University

Analysis of the molecular mechanisms involved in the cellular uptake of double-stranded RNA

Rieko Imae
Tokyo Women's Medical University / University of Tokyo

Genetic screen to identify genes involved in maintaining lysosome morphology, function and dynamics in *C. elegans*

Yuan Li
National Institute of Biological Sciences
Autolysosome formation requires clearance of phosphatidylinositol-3-phosphate by the myotubularin phosphatase MTM-3 in *C. elegans*.

Yanwei Wu
National Institute of Biological Sciences

Screening genes that regulate the nucleolar size in *C. elegans*

Szecheng J Lo
Chang Gung University

06. Morphogenesis, Migration and Cytoskeleton

Use of laser nano-ablation to study mechanical properties of epidermal acto-myosin cortex during *C. elegans* embryo elongation

Thanh Thi Kim Vuong
Institute of Genetics and of Molecular and Cellular Biology

Study of epidermal morphogenesis during early elongation at a single cell level

Emmanuel Martin
UQAM

Analysis of expression pattern, localization and function of the PAF1 complex, which is essential for epidermal morphogenesis in *C. elegans*.

Kenji Tsuyama
Tohoku University

A genome-wide RNAi screen to identify new players of a muscle-to-epidermis mechanotransduction pathway essential for embryonic elongation

Christelle Gally
IGBMC
Tissue Mechanics Regulate Epidermal Stem Cell Dynamics Coupled to the Molting Cycle

Sophie Katz
University of California Los Angeles

The role of PIGV-1 in maintaining epithelial integrity during C. elegans morphogenesis

Thang Dinh Doan
Mechanobiology Institute

Sequential apical and lateral cell constrictions initiate vulval lumen morphogenesis in C. elegans

Qiutan Yang
MLS University of Zurich

Dopamine regulates body size independently of TGF β pathway in C. elegans

Takashi Nagashima
The Univ. of Tokyo

Dissection of the facilitating role of lon-1 on the DBL/SMA pathway based on a novel hypodermal marker

Ho Tsan Wong
Hong Kong University of Science and Technology

Analysis of flp-10 that controls migration of the gonadal leader cells in C. elegans

Keisuke Morita
Kwansei Gakuin Univ.

Requirement of an ADAM (a disintegrin and metalloprotease) protease in promoting a BMP-like signaling pathway in Caenorhabditis elegans

Lin Wang
Cornell University
Genetic interactions among ADAMTS metalloproteases and basement membrane molecules in cell migration in *C. elegans*

Ayaka Imanishi
Kwansei Gakuin Univ.

Possible regulation of endocytosis by semaphorin during ray morphogenesis

Ayana Kobayashi
Nagoya University

Analysis of morphological changes of epidermal cells producing sensory rays in the *C. elegans* male tail

Shin Takagi
Nagoya University

Identification of proteins that interact with the AMPK-related protein kinase UNC-82/ARK5/SNARK/NUAK in *C. elegans* striated muscle.

Pamela E Hoppe
Western Michigan University

Mutational analyses of protein-protein interaction between UNC-112 (kindlin) and PAT-4 (ILK)

Hiroshi Qadota
Emory University

07. New Technology

Simple genome editing of essential genes by the CRISPR/Cas9 system using temperature sensitive lethal mutant strains

Yu Honda
Tohoku University

A method for integrating 4D images of *C. elegans* embryos expressing different fluorescent markers

Yusuke Azuma
RIKEN
08. Aging, Stress, Pathogenesis and Metabolism

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| 142 | AMPK and HIF-1 regulates ROS levels by a feedback loop to promote longevity and immunity in *C. elegans* | Seung-Jae Lee
Department of Life Sciences/IBIO/ Pohang University of Science and Technology |
| 143 | Myc and Mondo like transcription factor *mml-1* regulates fat metabolism and lifespan in germline deficient worms | Shuhei Nakamura
Max Planck Institute for Biology of Ageing |
| 144 | Identification and characterization of PDZ domain-containing proteins that regulate lifespan via insulin/IGF-1 signaling pathway | Seon Woo An
Pohang University of Science and Technology |
| 145 | A microRNA hormone in insulin/IGF signaling regulates lifespan across tissues | Yidong Shen
Max Planck Institute for Biology of Ageing |
| 146 | Deficiency of uracil exclusion genes and 5-fluoro-2’-deoxyuridine treatment increase lifespan of the short-lived AP endonuclease mutant worm. | Yuichi Kato
Kyoto University |
| 147 | Lifespan-extending effect of the rare sugar D-psicose on *Caenorhabditis elegans* | Masashi Sato
Kagawa University |
| 148 | Aging in Space | Yoko Honda
Tokyo Metropolitan Institute of Gerontology |
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic regulation for temperature experience-dependent cold habituation</td>
<td>149</td>
</tr>
<tr>
<td>Akane Ohta
Konan Univ.</td>
<td></td>
</tr>
<tr>
<td>Natural variation modifies temperature responses and memory</td>
<td>150</td>
</tr>
<tr>
<td>Misaki okahata
Konan Univ.</td>
<td></td>
</tr>
<tr>
<td>Artificial evolution and screening for mutants defective in temperature habituation</td>
<td>151</td>
</tr>
<tr>
<td>Yukari Kinoshita
Konan Univ.</td>
<td></td>
</tr>
<tr>
<td>Molecular and tissue networks underlying cold tolerance</td>
<td>152</td>
</tr>
<tr>
<td>Satoru Sonoda
Konan Univ.</td>
<td></td>
</tr>
<tr>
<td>Oxidative stress suppresses locomotion and pumping motion in Caenorhabditis elegans</td>
<td>153</td>
</tr>
<tr>
<td>Michiyo Suzuki
Japan Atomic Energy Agency</td>
<td></td>
</tr>
<tr>
<td>Stress-Enhanced Spermatogenesis And Sperm Quality in Aged Male C. elegans</td>
<td>154</td>
</tr>
<tr>
<td>Ying-Hue Lee
Academia Sinica</td>
<td></td>
</tr>
<tr>
<td>Effect of Repeated Starvation on Fat Content</td>
<td>155</td>
</tr>
<tr>
<td>Shinya Matsumoto
Kyoto Women's University</td>
<td></td>
</tr>
<tr>
<td>Age- and nutrition-associated change in the morphology and population of intestinal granules in Caenorhabditis elegans</td>
<td>156</td>
</tr>
<tr>
<td>Hirohisa Shiraishi
Iwate Medical University</td>
<td></td>
</tr>
</tbody>
</table>
Burkholderia pseudomallei suppresses Caenorhabditis elegans immunity by specific degradation of a GATA transcription factor

Song-Hua Lee
University Kebangsaan Malaysia

Is mutation rate fitness-dependent? II. Fitness decay and mtDNA mutation rate in mutation accumulation lines of the Nematode worm Caenorhabditis elegans

Chikako Matsuba
University of Florida / University of Oviedo

Characterization of a Caenorhabditis elegans mutant confers selective bacterial resistance

Yi-Wei Chen
National Cheng Kung University

Genome-Wide Identification of Enterohemorrhagic E. coli Virulence-Related Genes in Caenorhabditis elegans

Cheng-Ju Kuo
National Cheng Kung University

The bacterial metabolite violacein affects C. elegans development, fertility and behavior

Kyoung-Hye Yoon
UNIST / Yonsei University

C. elegans has two FoF1-ATPase inhibitors that are localized in different cellular compartments.

Laura Paulette Fernandez-Cardenas
UNAM

C. elegans W02B12.15b, a homologous gene of human cis1, is involved in oxygen consumption and mitochondria fission

Kuei-Ching Hsiung
Chang Gung University
Reduction of lipid droplets in the W02B12.15 mutant is AMPK dependent

Kuan-Yu Liu
Chang Gung University

Dietary methionine restriction in axenic medium decreases both methionine and S-adenosyl-L-methionine levels.

Rieko Yamauchi
University of Tsukuba

Characterization of intestinal amino acid transporter AAT-6 in C. elegans

Daisuke Murata
Osaka University

09. Cell Death

Natural compounds as probes to dissect lysosome homeostasis and functions based on a Caenorhabditis elegans screen

Yang Li
Chinese Academy of Sciences

qx222 affects apoptotic cell clearance in C. elegans

Jinchao Liu
National Institute of Biological Sciences, Beijing

The lysosomal cathepsin protease CPL-1 plays a leading role in phagosomal degradation of apoptotic cells in C. elegans

Meng Xu
Chinese Academy of Sciences

Identification and Characterization of Two Transthyretin-like Proteins in Cell Corpse Clearance in C. elegans

Haibin Wang
National Institute of Biological Sciences, Beijing
LIN-3/EGF promotes the programmed cell death fate in *C. elegans* by transcriptional activation of the pro-apoptotic gene *egl-1*

Hang-Shiang Jiang
National Taiwan University

Assisted Suicide: a Caspase- and Engulfment-Dependent Cell Death

Holly Johnsen
MIT

Influence of *wago-4* and *wago-5* on *C. elegans* germ cell apoptosis

Martin Keller
University of Zurich

ced-11 Is Required for the Morphological Appearance of Apoptotic Cell Corpses

Kaitlin Driscoll
MIT

A role of a *C. elegans*- pyrimidine synthase in programmed cell death

Wan-Ying Lin
National Taiwan University

10. *Cell Fate and Developmental Timing*

Transition from nuclear division to endoreduplication during intestinal development is modulated by CDC-25.2 activity

Miseol Son
Konkuk University

Elucidating the role of *nmy-2* in seam cell division patterns

Siyu Serena Ding
University of Oxford
Investigating the role of pal-1, the Caenorhabditis elegans homologue of caudal, in the development of the stem-like seam cells
Sophie P. R. Gilbert
University of Oxford

The kinase module of the Mediator complex regulates EGFR signaling to influence cell fate decisions in the C. elegans vulva
Jennifer M Grants
University of British Columbia

A noise-filtering genetic network regulates the timing of distal tip cell dorsalward turning
Yi-Chen Chen
National Taiwan University / Academia Sinica

Regulation of Developmental Timing and Cell-Fate Determination by Heterochronic Proteins LIN-29 and MAB-10
Akiko Doi
Massachusetts Institute of Technology

Analysis of the Function and Dysfunction of the ALS Gene C9ORF72 using C. elegans
Anna Corrionero
HHMI / MIT

11. Gene Regulation

The miR-58 Family Restricts Expression of PMK-2 p38 MAPK to the Nervous System
Daniel J. Pagano
MIT

Vulval bursting is caused by dysregulation of a single let-7 target, LIN-41
Magdalene Rausch
Friedrich-Miescher-Institute for Biomedical Research
In vivo toxicity of nanomaterials are regulated by microRNA

Yunli Zhao
Southeast University

RACK-1 Regulates let-7 MicroRNA Expression and Terminal Cell Differentiation in Caenorhabditis elegans

Yu-De Chu
National Taiwan University

An hnRNP Q/R homolog HRP-2 regulates let-7 miRNA function in Caenorhabditis elegans

Shih-Peng Chan
National Taiwan University

Molecular mechanisms of heterochromatin segregation during C. elegans differentiation

Daphne S Cabianca
Friedrich Miescher Institute for Biomedical Research/University of Basel

Phenotype and mRNA expression analyses of sphingosine kinase gene sphk-1 and sphingosine-1-phosphate phosphatase gene F53.C3.13 in Caenorhabditis elegans

Chiharu Rokushima
Ritsumeikan University

Gene expression and phenotype analyses of a ceramide kinase gene T10B11.2 in Caenorhabditis elegans

Yoshiyasu Ushida
Ritsumeikan University

Feedback Modulation of Chemoreceptor Gene Expression Mediated by Feeding State and NPR-1

Alexander M van der Linden
University of Nevada

Regulation of the bed-3 gene

Takao Inoue
National University of Singapore
12. Systems and Quantitative Biology

Combined use of chloroform and chymotrypsin as an effective strategy for the proteomic analyses of hydrophobic proteins

Hisao Kojima
Ritsumeikan University

A genome-wide systematic screen for genetic modulators of embryonic development.

Patricia Giselle Cipriani
New York University / New York University Abu Dhabi

Proteomic and Transcriptomic Analysis of Mutation of the Maternal Gene *spn-4* in *Caenorhabditis elegans*

Aimi Tomita
Ritsumeikan University

Quantitative proteomic and transcriptomic analysis of the maternal gene *mex-3* in *Caenorhabditis elegans*

Takehiro Oshime
Ritsumeikan University

Quantitative proteomic and transcriptomic analysis of mutation of the maternal gene *mex-1* in *Caenorhabditis elegans*

Hiroki Yamashita
Ritsumeikan University

Chemotaxis Simulation of *Caenorhabditis elegans* Using an Active Cord Mechanism in an Actual Environment

Shinya Nishikawa
Hiroshima University

WDDDD: Worm Developmental Dynamics Database

Koji Kyoda
RIKEN
Exploring the limit: the robustness landscape of embryonic PAR polarity

Yen Wei Lim
Temasek Lifesciences laboratory, National University of Singapore